チョコレートのような合金を目指して~2015~

熊本県立宇土高等学校 科学部化学・合金班

1 研究の目的

安全で融点の低い合金の作成を目指し、融点測定を確立する。

2 研究の方法

前年度に引き続き、スズ、鉛、ビスマスの3種類の合金を使用した。

また、昨年度の研究で酸化物が及ぼす影響が大きいと判断したことから、原料表面の酸化物を処理し酸化物の量を低下させること、反応系を窒素置換し、減圧することで加熱時の参加対策を行い、融点測定実験の再現性の向上と手法の確立をめざした。

- (1) ビスマス (Bi)、スズ (Sn)、鉛 (Pb) の表面の酸化皮膜を紙やすりで処理し、予め決定した質量比に従って量りとって三角フラスコに入れる。 (合金の質量が10gになるようにする)
- (2) 液体窒素を適量入れ、栓をして減圧機につなげ6分間減圧する。
- (3) 減圧が終了したらガスバーナーで加熱し、金属を溶かす。(減圧後、試験管を人肌ぐらいの温度まであたためておく→急激な加熱によるひび割れを防ぐため)
- (4) 金属が溶けて全て液体になったら、火を止めてフラスコを振り、一ヶ所に集めて合金を作る。
- (5) 出来た合金を取り出し、紙やすりで表面を削る。
- (6) 合金を冷やし、固まったら試験管に入れ、(2)と同じ動作をする。
- (7) 減圧が終了したらガスバーナーで加熱する。この際 SPARK で温度を計測する。計測するのは、 $0 \sim 50$ \mathbb{C} 程度から 300 \mathbb{C} までを 1 回、火を止め、300 \mathbb{C} から 50 \mathbb{C} 程度までを 1 回、これを 1 セットとして計 3 回計測する。

3 今回の結果

3つの金属の合金	1回目	2回目	3回目	平均	前回との差
ビスマス5% スズ5% 鉛90%	277.7	276.2	272.9	275.6	0.9
ビスマス5% スズ10% 鉛85%	260.4	261.7	257.9	260	0.5
ビスマス5% スズ80% 鉛15%	178.3	177.6	176.8	177.6	5.3
ビスマス5% スズ90% 鉛5%	100.4	97.8	98.5	98.9	-106.6
ビスマス10% スズ55% 鉛35%	158.6	156.2	154.7	156.5	-3.8
ビスマス20% スズ70% 鉛10%	159.8	162.4	160.5	160.9	-6.4
ビスマス30% スズ45% 鉛25%	94.3	92.9	93.3	93.5	-1.2
ビスマス45% スズ22.5% 鉛32.5%	89.5	88.2	89.6	89.1	-0.2
ビスマス45% スズ30% 鉛25%	94.6	89.8	92.8	92.4	1.1
ビスマス50% スズ40% 鉛10%	101.1	100.3	101.3	100.9	-2.3
				平均	-11.27
				最大	5.3
				最小	-106.6

4 考察とまとめ

実験の再現性の向上と、酸化に気を付けながら合金の融点測定する手法が確立した。金属の配合割合が 10%変わるだけで融点が劇的に変化するポイントを発見し、今後の検討課題とすることができた。酸化に対する事前処理にはまだ、検討の余地があると思われる。